
Dolittle — Experiences in Teaching Programming at K12 Schools

Susumu Kanemune�, Takako Nakatani�, Rie Mitarai�, Shingo Fukui�, Yasushi Kuno�

�Graduate School of Business Sciences, University of Tsukuba
�S-Lagoon Co., Ltd., �Armat Corporation

kanemune@logob.com, tina@s-lagoon.co.jp, rie@armat.com, �fukui,kuno�@gssm.otsuka.tsukuba.ac.jp

Abstract

The Japanese government has been promoting IT educa-
tion, including programming, at elementary and secondary
(K12) schools since 2002. We have developed Dolittle, an
object-oriented programming language suitable for K12 ed-
ucation, and evaluated it through the teaching opportunities
available in classrooms. This paper describes the outline and
the future outlook of Dolittle, and reports on the examples of
how it is used in classes.

1. Introduction

This paper describes a programming language called
“Dolittle” which we have developed for programming
education, and reports on the teaching experiences using
Dolittle.

The Japanese government has been promoting IT educa-
tion at elementary and secondary schools since 2002. Learn-
ing programming in an experiential way as a part of IT educa-
tion allows students to get a better understanding of software,
which is an essential part of computers. In the past, however,
there was no object-oriented language suitable to elementary
and secondary education. We have developed such language,
called Dolittle, and have been conducting experiments by
teaching Dolittle in classes. As a result of the experiments,
we have confirmed that Dolittle can be used in classes and
students can learn various aspects of computers through the
programming experience.

There are several related works such as Squeak[4],
which is based on Smalltalk[3], its educational language
SqueakToys[5]. Smalltalk is an object-oriented language but
it is not easy for children. SqueakToys is a programming
environment for children but it is not a text language.
Therefore we have designed a text language that even children
are able to understand. We use the idea of LOGO[6]’s turtle
graphics for drawing operations. We also use the idea
of cloning objects from prototype-based object oriented
languages such as Self[8].

In this paper, we at first describe the outline of Dolittle.
Then we report on the examples of using Dolittle in the
lessons at lower and upper secondary schools. Finally, we

introduce two applications of Dolittle that we are currently
working on: robot control and distributed programming.

2. A Programming Language Dolittle

When we designed Dolittle[1], we paid close attention
to making it a simple language in order to use it in school
lessons, but we also paid attention to making it a useful lan-
guage to allow students to develop practical programs. The
design policy of Dolittle is listed as follows:

� Simple syntax with Japanese words
The syntax of the language should be simple and easy to
learn. Programs should be written with Japanese words
and symbols. The ease of the language allows students to
use the language for learning instead of spending a long
time to learn the language itself.

� Incremental programming
The language should accept a single line program. The
program can be extended by adding new lines at the
end of it. Students need not write class/function/variable
definitions which inevitably increases the difficulty of
learning programming.

� Text-based programming
The language should use text-based representation be-
cause it allows concise and precise representation of pro-
grams with maximum freedom.

� Object-oriented
The language should support object-oriented program-
ming. Students manipulate objects on the screen by send-
ing instructions to it. The figure drawn with turtle graph-
ics also becomes an object. Dolittle adopts prototype-
based object-orientation. It generates new objects by
cloning existing objects and deals with the concept of
inheritance as a link between the objects.

� Open expandability
The language should provide a way to control external
devices and to communicate over networks. The control-
lability of external devices enables students to expand
the virtual world of the screen into the real world. The
communication over networks allows students to expand
the closed individual learning process into group-wide or
world-wide learning processes.



Figure 1 shows a sample Dolittle program that is written in
both Japanese and English. The rest of this section explains
the syntax of Dolittle base on the sample program.

kameta=turtle!create.
[kameta!100 forward 120 rightturn]!3 repeat.
tri=kameta!makefigure (red) paint.
clock=timer!create 1 period 10 duration.
rBtn=button!"Run" create.
rBtn:click=[clock![tri!36 rightturn]execute].

Figure 1: A sample Dolittle program and its execution

kameta=turtle!create.

Dolittle programs call on objects using “!.” This sample
statement sends a “create” message to the prototype object
“turtle” to let it clone itself, then assigns the created turtle ob-
ject to the variable called “kameta.” The period (“.”) indicates
the end of the statement.

Execution of the above statement draws a turtle object on
the screen. The turtle object is an object which implements
turtle graphics. The turtle move around on the screen with the
lines which show its tracks.

[kameta!100 forward 120 rightturn]!3
repeat.

The square brackets (“[...]”) represent a block. In this
sample statement, “[...]!3 repeat” sends a message “Execute
yourself three times” to the block.

Dolittle interprets identifiers after “!” (such as “forward”)
as message selectors. When numeric literals (such as “100”)
or parenthesized expressions (shuch as “(x)”, “(x + 1)”) are
placed between “!” and the message selector, they become
arguments to the message. When an object processes a mes-
sage, it normally returns the object itself. The returned object
receives the next message within the block. This is called a
cascade sending of messages. This sample statement sends
“rightturn” to the result of “forward” (the object itself).

Execution of the above statement draws a regular triangle
on the screen.

tri=kameta!makefigure (red) paint.

The lines drawn by “kameta” is a part of “kameta” itself
(imagine that the tail of the turtle is lengthened.) If you send

“makefigure” to “kameta”, it separates the drawn lines from
itself and returns the figure as a new figure object.

This sample statement sends “paint” message to the created
figure object. When you are going to refer identifiers (vari-
ables) within an argument list, you should enclose them with
brackets (“(...)”). The sample statement assigns the generated
figure object to the variable “tri.”

Execution of the above statement paints the triangle red.

clock=timer!create 1 period 10
duration.

A “timer” is an object which executes code pieces (blocks)
at a specified interval for a specified period. This sample
statement creates a timer object “clock” and sets the execution
period and the interval.

rBtn=button!"Run" create.

This statement creates a button object called “rBtn.” Exe-
cution of this statement displays a GUI part of a button shape.

rBtn:click=[clock![tri!36 rightturn]
execute].

This statement assigns a block to the “click” attribute of the
“rBtn” object. Dolittle defines a method by assigning a block
to an attribute. The “click” is the method to be executed when
the button is clicked.

When you click the button, the “execute” message is sent
to the “clock”, and the “clock” repeats the execution of the
block passed as an argument at the specified interval for the
specified period. As a result, the screen shows an animation
that the triangle rotates 36 degrees at a time.

We designed and implemented Dolittle in the year 2000.
Dolittle is written in Java so that it runs on various computer
environments most often used in schools.

3. Experimental Lessons

3.1. Experimental Lessons at High School

To evaluate Dolittle, we conducted small experimental
lessons at a senior high school.

Three first-year students of the High School at Otsuka,
University of Tsukuba (an attached high school of University
of Tsukuba) attended the lessons. One of them had some
experience in Visual Basic, the other two students had no
programming experience. One of the beginners knew nothing
about the concepts of programming and software.

Three lessons were held after school hours every two
weeks. Each lesson had a duration of one hour. One of the
authors took charge as the lecturer. Table 1 shows the curricu-
lum of the lessons.

In the first half of each lesson, we explained a sample
program (about 10 lines) and the students entered the code
to confirm the behavior of the program. Then the students did
a programming exercise in the second half.

The two programming beginners discovered the following
principles of computers through the programming experience:



Table 1: Curriculum of Experimental Lessons at High School
Lesson Contents
1 Explanation of messages and objects

Execute programs interactively using turtle graphics
2 Execute programs repeatedly at regular intervals using timers

Manipulate multiple objects
3 Define methods

Inheritance of objects

� There are rules in the execution of programs
The sequential execution, which executes instructions
from top to bottom, is one of the most basic behaviors of
computers. One of the students said “Programs are exe-
cuted from the top!” This means the student has realized
a basic principle that programs are executed basically
from top to bottom.

� The mechanism of monitor displays
Bitmap displays used for computers represent characters
and graphics as a set of dots (pixels). One of the students
asked a question, “Why does the turtle need 100 steps
to walk only 5 centimeters? Does it move along the 100
dots on the screen? ” This student noticed that computer
monitors handle length as a set of dots (pixels) instead of
a unit of length such as centimeters.

� The existence of operating systems
Computers use operating systems to control user inter-
faces and peripheral devices. We used Windows for these
lessons. “If we need a program to manipulate this turtle,
do we need another program running in the computer
to move this mouse cursor? If the programs display not
only the mouse cursor but all these windows, there must
be huge programs in this tiny notebook computer!” This
student was aware of the existence of programs (an op-
erating system) to move a mouse cursor which was anal-
ogous to the existence of the program to move the turtle.
The student also analogized that a computer consists of
vast amounts of software to control many windows and
application programs in addition to a mouse cursor.

Figure 2 shows a piece of work from a student. It is an an-
imation program of falling leaves. The behavior of the falling
leaves is embedded into them as a method. The leaves with
same color inherit the method of the first leaf, which means
that the student understood the inheritance of objects.

Computers operate with software but that mechanism is not
visible to us. In the experimental lessons, the students learned
through the active experience of programming. This enabled
the students to realize the various aspects of computers such
as the principle of sequential execution, and the existence of
pixels and operating systems.

3.2. Lessons at Junior High School

We conducted large experimental lessons at a junior high
school in 2001 to check if Dolittle is suitable for school
lessons.

Figure 2: A piece of work from a high school student

The experimental lessons were held at Kamata Junior High
School in Matsuzaka-city, Mie-prefecture, as a part of the
technical training course. All of the 132 second year students
attended the lessons. A programming lesson was a new expe-
rience for all of them. A teacher of the junior high school took
charge as the lecturer. We had provided the lecturer with the
documents and the workshops in advance and supported him
with e-mail when needed. We also created the questionnaire
and the exam questions to evaluate the students’ comprehen-
sion.

In the lessons, the lecturer explained at first the key points
of the day on the blackboard, then the students did some exer-
cises. Although the time length of one lesson in junior high
schools was fifty minutes, the actual length of each lesson
was only forty minutes since the startup of computers and
the filling-in and collecting of the questionnaires took five
minutes each. Figure 3 shows a scene of a lesson.

Figure 3: A scene of a lesson at junior high school

The students received documents at the beginning of each
lesson which formed the text of the day. This text contained
the explanatory examples, the description of new syntax, and
the exercises.

Table 2 shows the curriculum of the lessons. The titles
shown in the contents column are the actual titles of the texts
used in the lessons.

Figure 4 to Figure 6 shows the results of the questionnaire
surveys. We conducted the surveys at the end of every lesson
and the students evaluated “enjoyableness”, “achievement”,
and “difficulty” of the lessons in four scales.



Table 2: Curriculum of experimental lessons
Term Lesson Contents

2 �Turtle Graphics�
1 Let’s Try
2 Triangles and Squares

�Generate and Manipulate Figure Objects�
3 Stars, Circles, and Paint
4 Move Figures
5 Draw Variety of Figures

3 �Animation with Timer�
6 Timer
7 Set Timer in Your Program
8 Work on Your Own Program

�Use of GUI Parts (Button)�
9 Button

10 Button
11 Work on Your Own Program

We analyzed the results of the surveys as follows:

� The lessons were conducted comfortably
The survey results of “achievement” shows that less than
10% of the students answered “I could not complete the
exercise of the day (achievement=1).” This result indi-
cates that the lessons were conducted effectively to the
end without undue stress.

� Enjoyableness increases as lessons carry forward
The survey results of “enjoyableness” shows that the ra-
tio of the students answered “enjoyable (enjoyableness
= 3 or 4)” increases from 20% to 40% as lessons carry
forward. This is significant from the result of the statis-
tical sign test between first half and second half of the
lessons. On the other hand, the ratio of students answered
“unenjoyable (enjoyableness = 1)” is always less than
10% and goes down to 0% at the end.

� Filled with pleasure on achievement
As lessons progressed, more students felt that the
lessons were more “difficult” but more students felt that
the lessons were “enjoyable.” The correlation between
“achievement” and “enjoyableness” in the last lesson
is 0.55, which indicates that the achievement of the
exercises is linked to enjoyableness. The lecturer, Mr.
Idosaka, commented that “Many of the students were
delighted in themselves in being able to overcome the
difficulties.” We have succeeded in providing the lessons
with moderate difficulty and accomplishment for junior
high school students.

These lessons were conducted as a part of the technical
training course and were included in the range of two regular
examinations. We created the ground plan of exam questions
and completed them with the lecturer. Each question contains
check points to deeply analyze how much the students un-
derstood the programming concepts. Then we examined their
answers to determine if they understood the concepts as we
had intended.

The result of examinations indicated that more than 85%
of the students understood the basic programming concepts

Figure 4: Survey results (enjoyableness)

Figure 5: Survey results (achievement)

Figure 6: Survey results (difficulty)

such as the control structure (ex. iterations) and the detection
of syntax errors.

In lessons 9 to 11, the students created a drawing software,
which draws lines and figures using buttons, as an exercise to
summarize what they had learned. Figure 7 shows an example
of one student’s work. This program places the buttons on the
left-hand side of the screen and defines a method for each but-
ton. Most of the students created functional drawing software
using what they had learned in the class.

Table 3 shows the functionalities and the objects used in
various students’ work including the drawing software. More
than 85% of students used a variety of objects including but-
tons and timers.

Through the lessons, we have confirmed that:

� the programming lessons have been conducted effec-
tively in the classroom education for the entire grade (4
classes of 132 students),



Figure 7: One student’s work (drawing software)

Table 3: Analysis of students’ work
Fuction Usage rate

Turtle 100%
Figure object 97%
Iteration 96%
Button 93%
Timer 85%

� it is possible to conduct IT education using object-
oriented language in junior high schools. The concept
of object-orientation didn’t cause any problems with
learning Dolittle programming.

� many students have mastered the usage of GUI parts (es-
pecially buttons) and have shown strong interest in creat-
ing programs of a “pushing buttons activates a certain
action” style. The lecturer, Mr. Idosaka, observed that
“By using GUI parts in programs, such as the drawing
software, the students could link the programming they
had learned to the software used in the real world.”

4. Objects in Real World

Robots are real world objects. Through experience gained
in programming robots, students can link on screen program-
ming in the virtual world to the real world.

In this section, we describe the control of external devices
using Dolittle, then we introduce robotic cars, an application
of Dolittle, and report on the lessons we conducted at an
elementary school and a junior high school using the robotic
cars.

Dolittle provides the objects to control external devices.
The sample program in this section is to control a robotic car.
The robotic car we use here was designed by an engineer, Mr.
Masami Okada. He has published the robotic car’s specifica-
tions on his web site[2].

Figure 8 shows an example of the robotic cars. The board
is loaded with a one-chip microcomputer PIC which stores
up to 39 steps of instructions. The sensor switch on the front
edge of the car detects collisions with walls. It has two motors
to control two wheels so that the left and right wheels rotate

backwards and forwards independently each other. A program
written in Dolittle was transferred to the robotic car using
infrared ray (The robotic car can also be manipulated with
a TV remote controller. Students can play with it at home
without a computer). In Figure 9, a student is transferring the
program to the robotic car.

Figure 8: A robotic car

Figure 9: Transferring programs using an infrared ray

Figure 10 shows a sample program to control a robotic
car. It generates a “serialport” object “robot” and invokes the
methods to control the robotic car. The robotic car behaves as
follows:

� starts executing the program when the switch is turned
on,

� moves forward until it hits something,

� when it hits something, steps back and turns to the left,

� moves forward again until it hits something,

� when it hits something, steps back and turns to the right,

Note that the “!” at the beginning of the method block has
no object specified in front of it. This means that the message
is sent to the object that has the method defined in it (in this
case, “robot”).

robot�serialport�create.
robot�script�[

�startrobot
switchstart
forwarduntilcollision
10 back 15 rightforward 15 leftback
forwarduntilcollision
10 back 15 leftforward 15 rightback
endrobot].

robot!"com1" opensesame.
robot!script.
robot!run.
robot!closesesame.

Figure 10: A sample control program



4.1. Lessons at Elementary School

A robot is suited even for lower grade education since
students can touch it and see how it behaves.

Figure 11 shows a scene of a lesson conducted during
the hours for comprehensive studies in the sixth grade. Mr.
Kazuhiro Satoh, a teacher of Kanazawa Elementary School
in Chiba-city, Chiba-prefecture, conducted the lessons. In the
lessons, groups of students created paper bridges and pro-
grammed their robotic cars to pass under and then go across
the bridge to reach the goal. A group consisted of three or four
students and each member assumed a position of either a di-
rector, who managed the group, designer(s) who designed and
created the paper bridge, or programmer(s) who controlled the
robotic car.

The following comments are from Mr. Satoh:

� It is difficult to control the robotic cars along the course.
Some students recorded data to figure out how long they
should activate the motors to rotate the wheels for a
certain amount of time or to move the robotic car for a
certain distance. Students actively discussed and shared
information to resolve problems. The lessons were pro-
ceeded by setting goals (to cover the whole distance of
the course) and by making hypotheses.

� Dolittle allows students to write a program, execute
it, check the behavior, and then go back to the
programming. This interactive process remarkably
facilitates their programming. Their thought streams
have never been broken throughout the lessons.

Figure 11: Robotic car contest

4.2. Lessons at Junior High School

Students deepen their understanding of objects through ex-
perience in controlling robots in the real world.

Figure 12 shows a scene of a lesson conducted in the tech-
nical training course at a junior high school. Mr. Shuji Kure-
bayashi, a teacher of Nishi-mashizu Junior High School in
Fujieda-city, Shizuoka-prefecture, conducted the lessons. Stu-
dents programmed the robotic cars which negotiated around
obstacles in a simple maze to reach the goal.

Figure 12: Maze

Then students learned how to simulate the behavior of
robots on the screen. We use the “collision” method of the
turtle to detect collisions with obstacles. If students define this
method in the turtle object, it is executed when the turtle hits
the other objects. Figure 13 shows a sample execution of the
simulation.

Figure 13: Sample execution of robot simulation

The turtle object, which represents a robotic car, contains
the instructions (methods) to perform specific actions when it
collides with the other objects. These methods enable students
to define the behavior of the turtle when it hits the other turtles
or the walls. The turtle object moves by receiving instructions
that are sent repeatedly in a certain interval from the timer
object.

The following comments are from Mr. Kurebayashi:

� Dolittle effectively facilitates the students’ program-
ming. LOGO or BASIC language, which they previously
used, controlled the entire behavior of the robots as a
single program. Simulations of multiple robots with
these languages require complex programs, which are
not suitable for school lessons.

� In Dolittle, a specific action is defined as a method in
the object, and the action can be executed repeatedly at a
regular interval using a timer. These features of Dolittle
facilitate the simulations on the screen.

� Through the programming of robots, the students have
learned that physical phenomena affect the behavior of
objects in the real world. Even if they use the same
program, the robot behaves differently because of other
factors such as friction with the ground surface and the
attrition of the battery. The students have learned through
the comparison between the simulations on the screen
and the actual behavior in the real world.



5. The World of Distributed Sharing

We evolve the learning process of programming by extend-
ing the Dolittle objects to be network capable.

5.1. Distributed Sharing Dolittle

The distributed sharing version of Dolittle should enable
students to:

� learn collaboratively
Students can learn programming by collaborating with
other students, in addition to individual learning.

� develop programs which operate collaboratively
Students can develop programs that communicate with
each other, in addition to programs that operate indepen-
dently.

� experience programs which operate over networks
Students can experience programs that communicates
over networks, in addition to programs that operate only
within a stand-alone computer.

� boost international exchange
Students can boost international exchange over networks
using Dolittle programs, in addition to the lessons in
classrooms.

In Dolittle, we are able to create a new object by cloning
existing objects and store it in variables or arrays. The dis-
tributed sharing version of Dolittle follows this approach.
Figure 14 (left) shows how to clone objects. The object server
on the network manages objects. Dolittle registers a clone of a
local object by invoking a “put” method of the “server” object.
And it clones the registered object in the server to a local
machine by invoking a “get” method of the “server” object.

These features enable students to register and publish their
own objects on the server and enables other students to re-use
them in their own programs.

Figure 14: Registering, cloning and sharing objects

Figure 14 (right) shows how to share objects. Dolittle cre-
ates a view of an object on the server to the local machine
by invoking a “share” method of the “server” object. In the
Model-View-Controller (MVC) model, an object on the server
is equivalent to Model and a shared local object is equivalent
to View and Controller.

Figure 15 shows a sample program to share an object. This
program connects to the server “sv1” and shares an object

“turtle1” in the server with the name “t1.” Then it sends a mes-
sage to “t1” to move it forward on the screen. The message to
“t1” is transferred to the server and executed. If another Dolit-
tle program shares the same “turtle1”, this message moves the
object on its screen as well.

server!"sv1" connect.
t1=server!"turtle1" share.
clock=timer!create.
clock![t1!10 forward]execute.

Figure 15: A sample program to share objects

There are some related works such as NetMorph[7] as a
distributed environment. NetMorph is a mobile object system
of Squeak and its object can move around some machines. On
the other hand, Distributed Sharing Dolittle is a object server
system and its object can be stored and shared between some
clients.

We are currently improving upon the distributed sharing
version of Dolittle and intend to conduct experimental lessons
at junior high schools in 2004. In this section, we discuss the
lessons conducted at a company.

5.2. Lessons at Company

Programming in Dolittle is also applicable to adult educa-
tion.

We conducted a three day programming lecture using
Dolittle as part of company’s training course. The title of the
lecture was “The principles of computer operation.” One of
the authors took charge as the lecturer. The students were
15 new employees who intend to be sales representatives or
system engineers. Two of the students had used programming
for research work, and another two had experienced
programming in university. The other 11 students had no
experience with programming.

In the two days prior to this lesson, the students had at-
tended a lecture on how to assemble a personal computer
kit. Since they already had learned about the hardware-side
principles of computers, we focused on teaching the software-
side principles through programming experience in Dolittle.

Table 4 shows the curriculum and Figure 16 shows a scene
of the lecture. In the morning class of the third day, we
explained that the PCs in the classroom were connected to
network in a LAN environment, and then the students dealt
with the following features of the distributed sharing version
of Dolittle:

� Transferring objects: The students created buttons which
performed certain actions when clicking them and reg-
istered them with the server. Then they cloned the other
students’ buttons onto the local machines and executed
them to see what occurred.

� Sharing objects: All students share a turtle object on
the server and manipulated it from their own programs
simultaneously.

In the questionnaire survey we conducted after the lecture,
some students commented that “I could see the programs in



Table 4: The curriculum of the lecture
Lesson Contents

1st. day (AM) Relation between computers and software; In-
stall Java and Dolittle

1st. day (PM) Your first program
2nd. day (AM) Repetition using timer
2nd. day (PM) Method definition, Network
3rd. day (AM) Work on your own program
3rd. day (PM) Presentation of own programs

Figure 16: A scene of the lecture

the computer communicating with each other.” This result
indicates that the students, who had never thought about the
mechanism of WWW or mobile phone networks, understood
the mechanism of data communication.

The distributed sharing version of Dolittle becomes a tool
for international exchange if we extend the network from a
LAN in a classroom to the Internet.

We are currently working on:

� Multilingualization
Dolittle currently supports Japanese, English, and Ko-
rean. Students who use different languages are able to
exchange their programs and execute them without trans-
lation. In future, Dolittle will support Chinese and many
other languages.

� Internet server
Locating object servers on the Internet will enable stu-
dents to share objects over the Internet.

� Applets
The applet version of Dolittle will enable students to
execute Dolittle programs on Web browsers.

Figure 17 shows a sample screen from the Korean version.

6. Conclusion

Object-oriented languages are suitable languages for be-
ginners in order to learn programming. In this paper, we in-
troduced a programming language called Dolittle which has
simple syntax and does not require class/function/variable
declarations. Then we examined the practicality of Dolittle
through the experimental lessons. In the small experimental
lessons for high school students, we confirmed that students
understood the principles of software through the program-
ming experience. In the large experimental lessons for junior

Figure 17: A screen from the Korean version

high school students, we made sure that the programming les-
son could be conducted in classrooms using Dolittle. Then we
verified that elementary and junior high school students were
able to learn programming effectively using robots controlled
by programs. Then we introduced the idea of making Dolittle
objects network capable and discussed the lessons learned
using the distributed sharing version of Dolittle. Finally, we
explained our future conceptions of Dolittle. In our future
work, we hope to develop more programs using the distributed
sharing feature and study the usage of Dolittle in international
exchange.

Acknowledgment

We are grateful to the following schools and company for
their cooperation on the experimental lessons: High School at
Otsuka, University of Tsukuba, Kamata Junior High School,
Matsuzaka-city, Mie-prefecture, Nishi-mashizu Junior High
School in Fujieda-city, Shizuoka-prefecture, Kanazawa Ele-
mentary School, Chiba-city, Chiba-prefecture and Ricoh Co.,
Ltd.

References

[1] Dolittle programming language. http://www.logob.com/dolittle/.
[2] Measurement and control using Logob and Dolittle. http://

www.logob.com/users/seigyo/.
[3] Adele Goldberg and David Robson. Smalltalk-80: The Lan-

guage and Its Implementation. Addison-Wesley, 1983.
[4] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and

Alan Kay. Back to the future: the story of Squeak, a practical
Smalltalk written in itself. In Proceedings of the 1997 ACM
SIGPLAN conference on Object-oriented programming systems,
languages and applications, pp. 318–326, 1997.

[5] Alan Kay. Etoys and simstories in Squeak. http://
www.squeakland.org/author/etoys.html.

[6] Seymour Papert. Mindstorms : children, computers, and power-
ful ideas. Basic Books, 1980.

[7] Masashi Umezawa, Kazuhiro Abe, Satoshi Nishihara, and Tet-
suya Kurihara. NetMorph — an intuitive mobile object system.
In Proceedings of the Conference on Creating, Connecting and
Collaborating through Computing (C�), pp. 32–39, 2003.

[8] David Ungar and Randall B. Smith. Self: The power of simplic-
ity. In OOPSLA�87, pp. 227–242, 1987.


