
Multilingual Programming Language Environments for Intercultural
Collaboration of Programming Education in K-12

YongChul Yeum, DaeYoung Kwon, SeungWook Yoo
Department of Computer Science Education, Graduate School

Korea University
Anam-dong Sungbuk-ku, Seoul,136-701, Korea

{yongchul.yeum, daiyoung.kwon, yoosw0810}@inc.korea.ac.kr

WonGyu Lee
Department of Computer Science Education, Colledge of Education

Korea University
Anam-dong Sungbuk-ku, Seoul,136-701, Korea

lee@inc.korea.ac.kr

Susumu Kanemune
Hitotsubashi University Computer Center

Hitotsubashi University
2-1 Naka, Kunitachi City, Tokyo, Japan

kanemune@cc.hit-u.ac.jp

Yasushi Kuno
Graduate School of Business Sciences

Tsukuba University
3-29-1 Otsuka, Bunkyo-ku, Tokyo, 112-0012, Japan

kuno@gssm.otsuka.tsukuba.ac.jp

Abstract

This article is chiefly concerned with multilingual pro-
gramming language and system for collaboration of pro-
gramming education in K-12. For a programming language
to become a multilingual, it could be programmed in a man-
ner independent on any locale. And this locale independent
resource files can be easily translated into a new locale.
Therefore when a multilingual programming language for
K-12 is designed, it should have no keywords that have a
particular meaning to the programming language. In ad-
dition, it specifies a set of characters which are based on
Unicode character instead of a single character. Dolittle[1]
as an both multilingual and educational programming lan-
guage has all kinds of features descibed above. Especially,
it supports translation server for interculture collaboration
between Korea and Japan to teach and learn programming
education in K-12. We also conducted experimental lesson
to evaluate the effectiveness of Dolittle’s inflected dictio-
nary in Korea. It was found from the result of the exper-
imental lesson that using inflected dictionary of identifiers
can decrease overall error ratio in comparison with using
only one identifier.

1 Introduction

This paper discusses multilingual programming environ-
ments for programming education and intercultural collab-
oration in K-12. Our research is also based on a recognition
that programming education at K-12 can benefit many di-
verse people who will live in information society of 21th

century. That is, programming experience as a part of IT
education allows students to get a better understanding of
software and principles of computer science, which is an
essential part of computers[9][22].

Since the early 1960’s, researchers have built a number
of programming languages and environments with the in-
tention of making programming accessible to a larger num-
ber of people[11]. Especially we call such a program-
ming language as an educational programming language,
i.e. EPL[12][13], such as LOGO, Squeak, Karel. EPL is de-
signed primarily as a learning instrument and not so much
as a tool for writing real-world application programs[2].

However, most EPL does not support multilingual pro-
gramming environment. It means everyone who programs
with EPL has to learn English eventually to get a handle
on its function names and language constructs. But con-
sidering that learning another language is difficult for most
people[17] and the language should avoid using words and

2007 International Conference on Convergence Information Technology

0-7695-3038-9/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCIT.2007.292

1708

symbols that are unfamiliar to users[15], it needs to support
multilingual environments above all.

Typically, for a programming language to be a multilin-
gual, it should be internationalized and localized through
making resource files which are loaded during program ex-
ecution as needed. This means that the code should be pro-
grammed in such a manner that is doesn’t dependent on any
specific locale - that is language or cultural conventions[18].
Thus to support multilingual languages, one would design
programming language to select the relevant language re-
source files at runtime, which are translated to the required
languages. However this kind of methodology has some in-
herent disadvantages. For instance, if a message displayed
to the user in one of several languages is modified, all of
the translated versions must be changed[3]. It means the
distributed resource files is hard to be modified. Moreover,
keywords can’t be localized without compiling source code
again. Keywords are a word or identifier that has a partic-
ular meaning to the programming language or a reserved
word which identifies a syntactic form.

In this paper, we suggest keywordless EPL such Dolit-
tle which is our research target. Dolittle[1] has elastic and
effective multilingual features. It has no any reserved word
by itself. Currently, Dolittle system for Japanese, English
and Korean are distributed. Also Dolittle can include user
domain-specific dictionary into the user’s code or config
file. For example, if users are children, teacher can remake
the dictionary file according to their knowledge from the
domain that are more familiar and appropriate. Moreover,
simple word-by-word substitution can transfer a Dolittle
program from one language to the other, leading to inter-
national program exchange server[9][10].

We also conducted experimental lesson in order to eval-
uate the effectiveness of Dolittle’s inflected dictionary in
Korea. These results lead us to the conclusion that when
we have a lesson at k-12, student’s background knowledge
and domain-specific demands[20] need to be handled in
detail[7][12][13].

In this paper, we first describe internationalization of
programming Language. Secondly we discuss about the
keywordless EPL. And then we analyze the features of mul-
tilingual EPL, Dolittle. Finally, we introduce experimen-
tal lesson about using inflected dictionary of identifiers by
Dolittle.

2 Internationalization of Programming Lan-
guage

Multilingual computing [6] is defined as “Use of com-
puter to communicate with people in various languages”.
As one of multilingual computing, multilingual program-
ming language makes it possible to teach and learn com-
puter programming among interculcural schools collabora-

tively. In general, in order to support more than one lan-
guage simultaneously, it should follow the typical process
for making a program multilingual. That is, it needs to
take internationalizational process enough to run correctly
in any locale. The required corollary to internationalization
is localization-the process of arranging for a program to run
in a specific locale.

Internationalization is often abbreviated as I18N (or
i18n or I18n) where the number 18 refers to the number of
letters omitted. Localization is often abbreviated L10n or
l10n in the same manner[3].

2.1 Typical Process for I18n

There are several distinct steps to the task of internation-
alization. Typically we can devide the process for i18n into
3 steps[18][19].

First, source code must be internationalized. This means
that we can program the code with an any specific locale. If
not internationalized at the beginning of design, supporting
multilingual environments could be nearly impossible.

Figure 1. Sample locale independent source
and locale dependent source

Second, separate textual data and other environment-
dependent resources are separated from the program code
shown in Fig. 1. Supporting a different environment, ide-
ally, only requires change in those separate resources with-
out code modification. It means that a language developer
deals with the source code and corresponding resource files
handled by translator. It seems to be difficult because the
development team needs someone who understands foreign
languages and cultures; such a person may be difficult to
find.

Finally, after localized, we can distribute the localizaton
source to the users. This program must be able to read,
write, and manipulate localized text, and display all user-
visible text in the local language.

1709

2.2 What is Localized?

The hardest work of the localization is often basic trans-
lation of text according to the specific locale. This kind
of test can be constructs of language(e.g. token, keyword)
and messages(e.g. error messages). So what is important
is character and character sets which can be used in regu-
lar expressions, in the helpers and Tokens sections of the
specificaton file.

For example, Java uses the Unicode character encod-
ing, which by itself is a huge step toward international-
ization. In addition, the InputStreamReader and Output-
StreamWriter classes convert text from a locale-specific en-
coding to Unicode and from Unicode to a locale-specific
encoding, respectively[4].

However, most programming language can not allow re-
served words(e.g. if-statement, the words “if” and “else”)
to be localized. As for EPL, it is very important that every-
thing could be localized without exception. We will discuss
the cause why these reserved words(keywords) can not be
easily localized in the following chapter

3 Keywordless EPL

So far, there has been little study that tried to make a pro-
gramming language both keywordless and multilingual for
K-12. An example of keywordless progamming language
is J programming language[5]. It requires only the basic
ASCII character set in order to avoid the problems faced by
the special character set of APL. The code of J could be pro-
grammed only by ASCII character set. But J language does
not support multilingual. Another example is Dolittle[1]
which does not has any reserved word(keyword).

Dolittle will be examined further in the next chapter.
Now, Let’s discuss what is keywordless and what is the
merit of being keywordless in detail.

Programming language definition can be loosely di-
vided into two parts:syntax, or structure, and semantics, or
meaning[14]. An issue closely related to the syntax of a
programming language is its lexical structure-the structure
of the words of the language, which are usually called to-
kens. In the example of a C if-statement, the words “if” and
“else” are token. Other tokens in programming languages
include identifiers(or names), symbols for operations, such
as “+” and “¡”, and special punctuation symbols such as the
semicolon(“;”) and the period(“.”).

Special words in programming languages are used to
separate the syntactic entities of programs such as if = ‘if’ or
while = ‘while’[8]. These words are classified as reserved
words, but in some they are only keywords. Therefore a
keyword is a word or identifier that has a particular meaning
to the programming language. A reserved word is a special

word of a programming language that can not be used as a
name[16].

As described above, tokens consist of symbols, identi-
fiers and words which can be as keyword. If keywords,
i.e. reserved word, are removed from tokens, tokens are
either symbols or identifiers. As symbols are common no-
tation, we only have to deal with identifiers for intercultural
and multilingual purpose. Therefore, what is keywordless
means that we can deal with program or collaborated with
identifier based on Unicode character set.

4 Multilingual EPL Dolittle

Dolittle[1] is an object-oriented and interpreter-based
programming language for K-12 schools. Currently, it sup-
ports Japanese, Korean and English as shown in Fig. 2. In
addition, Dolittle does not have any reserved word or key-
word by itself[9]. Only it has predefined names of standard
objects. These names can be also extended by adding corre-
sponding alternatives according to the originally represen-
tative name [7]. We believe that this keywordless feature of
Dolittle can be the key of solving the problems about i18n,
which are descrived above.

4.1 Characters and Character Sets

Dolittle lexers generated by SableCC[8][21] can read 16
bit Unicode character streams. A character set in Dolittle’s
grammar consists of a range of character based the Unicode
ordering. It only specify a set of characters, instead of a
single character which can be regarded as keyword, i.e. re-
served word. Thus Dolittle can include all Unicode char-
acters with an index greater and less, which is an identi-
fier. The following character sets are the Unicode ordering
ranges in Dolittle.

• kanji = [0x4e00..0x9fa5];

• hirakata = [0x3040..0x30ff];

• hangul = [0xac00..0xd7a3];

• ascii = [0..0x007f];

A hexadecimal number represents the Unicode character
with the same index. So Dolittle can accept any characters
among square brackets as identifier. Thus, the most impor-
tant point for a multilingual programming language is above
Unicode based character sets.

4.2 Predefined Names of Standard Ob-
jects

As we said above, there is no reserved words in Dolittle.
Instead, there are predefined names of standard objects(e.g.

1710

Figure 2. Screens from the Japanese, Korean
and English version

Turtle, Timer) or methods (e.g. Forward, Execute) through
system dictionary, as shown in Fig. 3. These all predefined
names are also composed by Unicode character streams. By
changing this dictionary, we can easily convert to other lan-
guages.

Dolittle can easily extend its localized word dictionary.
Fig. 4. show the process. That is, once after source has
been completed, first localization is accomplished by devel-
oper according to the base of word dictionary. Then, this
first localized files are distributed to the each locale. We
call it as base dictionary of locale, which acts as a repre-
sentative word. In Fig. 4, Circle having locale text means
first localized files. This file also can be used on supporting
international program exchange server. Circles in a dotted
line indicate that they could be translated since translation

Figure 3. Localization of standard object

Figure 4. Translation to other languages ac-
cording to the dictionary

server only know the base dictionary of locale. For exam-
ple, a circle can be Korean and b circle can be English lo-
cale. Futhemore, Fig. 4 shows multi-locale files. That is, if
some users are one of other domain in the same locale, i.e.
childeren in elementary school, the locale can be reformed
as a1 or a2 circle for being more familiar and effective dic-
tionary to them.

4.3 International Program Exchange

Simple word-by-word substitution can transfer a Dolittle
program from one language to the other, leading to interna-
tional program exchange. User can upload a program from
Dolittle and can download with language translation. So we
can collaborate and share with each other by using this ex-
chage server. Fig. 5. shows a structure of Program Transfer
Server and Translation Table. Program Transfer Server and
Dolittle clients communicate with XML-RPC protocol.

Using Program Transfer Server, we can communicate
with some students among Korean and Japanease. Fig. 6.
shows network button.

5 Experimental Lesson about Using Inflected
Dictionary of Identifiers

To evaluate the effectiveness of Dolittle using inflected
dictionary of single Korean word, we conducted small ex-
perimental lesson with fresh students of Korea University
in 2006. The participants in this lesson were ten in all and

1711

Figure 5. Program transfer server and trans-
lation table

Figure 6. Screen on network load

learned C language during first term. We divide this stu-
dents into two groups. Intetionally we made the second
group(1:N) know the inflected dictionary of single Korean
word, but the first group(1:1) did not. Table 1 shows the
curriculum of the lessons and Fig. 4 also shows a screen
from the lesson.

Figure 7. Screen from the lesson

Prior to this lesson, we already revised Dolittle[21] ver-
sion which can automatically make all messages saved into
log file when students click the run button. This log file con-
tains all kinds of situation either about errors or not. Table
2 shows the results of analysis of log files.

Table 1. Curriculum of experimental lessons

Lesson Contents
1 Basic syntax of Dolittle
2 Using predefined objects and methods
3 Method definition and the concept of cloning

Table 2. Analysis of log files

ratio first group(1:1) second group(1:N)
all error 44.3% 32.0%
systatic error 48.2% 55.3%
semantic error 21.4% 14.2%

As more than 10% of the students did not make an error
as shown in Table 2, it seems reasonable to conclude that
using inflected dictionary of identifiers can decrease over-
all error ratio in comparison with using only one identifier.
what is more, decrease ratio in semantic error suggests that
it has close relation with user’s preference or acquaintance
about the words.

6 Conclusions

Producing real multilingual programming language is a
complex task. Moreover, the process of making multilin-
gual EPL[12][13] acceptable and adaptable to students of
K12 across different nations is a challenging work. Al-
though researchers have built a number of programming
languages and environments with the intention of making
programming accessible, little attention has been given to
the multilingual EPL.

In this paper, however, we have examined the features
of Dolittle as a multilingual EPL and resulted the following
conclusions.

When a multilingual programming language for K12 is
designed, it should have no keywords that have a particu-
lar meaning to the programming language. In addition, it
specifies a set of characters which are based on Unicode
character, instead of a single character.

If a programming language support keywordless aspects
and Unicode characters, there are some kinds of advantages
as follows. First, localization could be carried out conve-
niently by locale user. Once resource file localized by devel-
oper, locale user can extend first word dictionary according
to their need. That is, it can be adapted to user’s knowl-
edge and domain-specific request. Second, students in K12
can use translation server such as Dolittle Program Transfer
Server for international program exchange and interculture

1712

collaboration about programming education. User can up-
load program and download with language translation.

Finally, we also conducted experimental lesson in order
to evaluate the effectiveness of Dolittle’s inflected dictio-
nary in Korea. It was found from the result of the exper-
imental lesson that using inflected dictionary of identifiers
can decrease overall error ratio in comparison with using
only one identifier.

7 Acknowledgments

We are grateful to Prof. Susumu Kanemune at Hitotsub-
ashi University and Yasushi Kuno at Tsukuba University in
Japan for his many comments and contributions during this
work. We alse wish to thank to the students of Korea Uni-
versity involved in this experimental work.

This research is supported by Joint Research Project un-
der the Japan-Korea basic scientific cooperation program
for FY 2005-2006

References

[1] http://dolittle-eng.eplang.jp/.
[2] http://en.wikipedia.org/wiki/Educational programming language.
[3] http://en.wikipedia.org/wiki/Internationalization and localization.
[4] http://java.sun.com/.
[5] http://en.wikipedia.org/wiki/J programming language.
[6] An Introduction to Multilingual Computing.

http://languagelab.csumb.edu.
[7] H. S. Choe, D. Y. Kwon, Y. C. Yeum, S. W. Yoo, and W. G.

Lee. Multi-reserved words supporting system for object-
oriented educational programming language dolittle. The
Journal of Korean Association of Computer Education 8(2),
2005.

[8] E. Gagnon. Sablecc : An object oriented compiler frame-
work. Technical report, McGill University. Master Thesis,
1998.

[9] S. Kanemune and Y. Kuno. Dolittle : an object-oriented
language for k12 education. Eurologo 2005, Warsaw.

[10] S. Kanemune, T. Nakatani, R. Mitarai, S. fukui, and
Y. Kuno. Dolittle : Experiences in teaching programming
at k12 schools. The second International Conference on
Creating, connecting and Collaborating through Computing,
IEEE, 2004.

[11] C. Kelleher and R. Pausch. Lowering the barriers to pro-
gramming: A taxonomy of programming environments and
languages for novice programmers. ACM Computing Sur-
veys, 37(2):83–137, June 2005.

[12] H. S. kim, H. Jang, H. C. L. , D. Y. Kwon, Y. C. Yeum, S. W.
Yoo, H. C. Kim, and W. G. Lee. Teach programming to non-
cs major students : Experiments with storymaking approach.
Information Processing Society of Japan, SSS2004, 2004.

[13] D. Y. Kwon, H. M. Gil, Y. C. Yeum, S. W. Yo, S. Kane-
mune, Y. Kuno, and W. G. Lee. Application and evaluation
of object-oriented educational programming language dolit-
tle for computer science education in secondary education.

The Journal of Korean Association of Computer Education
7(6), 2004.

[14] K. C. Louden. Programming Languages: Principles and
Practice, volume 1. Thomson, 2th edition, 2003.

[15] J. F. Pane and B. A. Myers. The influence of the psychology
of programming on a language design: Project status report.
12th Workshop of the Psychology of Programming Interest
Group, April 2000.

[16] R. W. Sebesta. concepts of Programming Languages, vol-
ume 1. Pearson, 6th edition, 2004.

[17] D. C. Smith, A. Cypher, and J. Schmucker. Making pro-
gramming easier for children. October 1996.

[18] M. Suodenjoki. Introduction to internationalization and lo-
calization. http://www.suodenjoki.dk/.

[19] O. Tykhomyrov. Introduction to internation-
alization programming. In Linux Journal.
http://www.linuxjournal.com/node/6176/print.

[20] W. H. Whang and K. M. Kim. An application of educa-
tion programming language dolittle in teaching and learning
of mathematics. Information Processing Society of Japan,
SSS2004, 2004.

[21] Y. C. Yeum, H. S. Jang, D. Y. Kwon, S. W. Yoo, S. Kane-
mune, and W. G. Lee. Dolittle:a heuristic approach to im-
proving error messaging module based on error feedback
strategy for k12. IJCSNS International Journal of Computer
Science and Network Security, 6(7), 2006.

[22] S. W. Yoo, K. A. Kim, Y. Kim, Y. Yeum, S. Kanemune, and
W. Lee. Empirical study of educational programming lan-
guage for k12: Between dolittle and visual basic. IJCSNS
International Journal of Computer Science and Network Se-
curity, 6(6), June 2006.

1713

