Join Token-Based Event Handling: A
Comprehensive Framework for Game
Programming

Taketoshi Nishimori and Yasushi Kuno

Graduate School of Business Sciences, University of Tsukuba,
Tokyo, 3-29-1 Otsuka, Bunkyo-ku, Tokyo, 112-0012, Japan
nis@nisnis. jp,
kuno@gssm.otsuka. tsukuba.ac. jp
http://wuw.gssm.otsuka.tsukuba.ac. jp/

Abstract. In action game programming, programmers have to control
multiple concurrent activities on the screen corresponding to multiple
game characters. To address this difficulty, many game-oriented script-
ing languages have been proposed so far. However, current scripting lan-
guages seem to lack support for interactions among multiple concurrent
activities in a state-dependent manner. To overcome this problem, we
propose an event handling framework called “join token” in which the
states of game characters can be expressed as tokens and interactions can
be described as handlers specifying multiple tokens. For the purpose of
evaluation, we have developed a game scripting language called “Moge-
moge,” and wrote several sample games in this language. In this paper,
we describe experiences of using join token framework for sample games
and compare the code written in Mogemoge against a code written in an
existing scripting language.

Keywords: video game, programming language, event handling frame-
work, scripting language

1 INTRODUCTION

Video game programming, especially that used for action games, has the distin-
guishing characteristic that programmers have to manage multiple concurrent
activities on the screen corresponding to multiple game characters. For example,
in many shooting games, multiple missiles are concurrently moving on the game
screen, and when those missiles “hit” various objects, the resulting effects are
different depending on the kind of objects and their states such as whether they
have a shield or not.

Managing concurrent activities in general purpose programming languages
such as C++ or Java is notoriously difficult and complex.

One way to deal with this problem is to use game-oriented scripting lan-
guages. Scripting languages can provide language mechanisms and/or frame-
works to support concurrent activities of multiple game characters, so that pro-
grammers can describe the logic of the game in a more straightforward manner.

2 Authors Suppressed Due to Excessive Length

For example, Stackless Python [12][15] supports micro-threads that make it
feasible to assign a dedicated thread to each of the game characters. However,
this approach does not address the problem of interaction among the characters,
which is the main focus of this paper.

UnrealScript[14] supports concurrent objects called “actors.” In this scripting
language, methods are invoked under some corresponding conditions. However,
UnrealScript also does not address the problem of interaction among the char-
acters.

To address this problem, we propose an event handling framework called
“join token” that coordinates multiple, state-dependent, concurrent activities
required for a game description[9]. To assess the effectiveness of this mechanism,
we have designed and implemented an experimental game-oriented scripting lan-
guage called “Mogemoge” that incorporates join token as a built-in coordination
mechanism. For the purpose of evaluation, we have written several demo games
using Mogemoge.

The concept of join token is based on join-calculus [4] and Linda[7] compu-
tational models. Join-calculus models the coordination of multiple concurrent
tasks. Linda models the decoupling of the message sender and receiver. As far
as we know, there are several programming languages based on either of these
models, but no language has combined both of these models.

The major contribution of this paper is our interim evaluation of join token
framework through two demonstration game implementations, one of which was
also written in Ruby for comparison purposes. The concept of the join token
framework and an overview of Mogemoge language are already described in [9];
we briefly presented these in this paper because these are necessity to understand
the main point of the research.

The structure of this paper is as follows. In Section 2, we explain the idea and
design of the join token framework and discuss its characteristics. In Section 3,
we provide an overview of Mogemoge language, along with its implementation. In
Section 4, we explain two sample games implemented in Mogemoge, and present
a comparison with one of the games implemented in Ruby/Tk. In Section 5, we
explain related works and discuss the strong points of join token. In Section 6,
other issue including concurrency and performance are discussed, and finally the
conclusion is drawn in Section 7.

2 JOIN TOKEN: AN EVENT HANDLING
FRAMEWORK SUITABLE FOR GAMES

The majority of game programs and/or game scripting languages are based on
object orientation, because many games are based on simulated behavior of real
(or virtual) objects. In object orientation, behaviors (actions) are described as
methods attached to one of those objects. Methods are implemented as subrou-
tines and are called from other methods (or from the main routine).

However, the above design differs significantly from interactions in game pro-
grams, as follows:

Title Suppressed Due to Excessive Length 3

(1) objects

Object_ A throw tokens token pool predefined handlers

throw tok2(5) ~a t0k2(5) join o1.tok1(x) 02.tok2(y)
object = A where x +y > 6 {
02.put(x); ol.put(y);
Object_B L tok1(3) }
throw tok(3) object = B join .. {
}

(2) ignition: token maching &
condition checking

Object_A.put(3);
(3) fire: handler execution J‘ec ApUd)
Object_B.put(5);

ignition;

Fig. 1. Idea of join token

Interactions in games are associated with two or more characters, while meth-
ods are attached to a single object.

Interactions in games are initiated when some conditions are met, while
methods are invoked from some other methods.

Interactions are controlled by the states of each associated character, while
method invocations are controlled solely by the calling object.

These differences make it difficult to express the programmers’ (or the game
designers’) idea in a straightforward manner when using an object-oriented (O-
O) language.

To overcome these problems, we propose the new event handling framework

called “join token,” as a supplementary mechanism to conventional object ori-
entation (Fig.1).

Each object participating in an interaction expresses its willingness to par-
ticipate by generating a “token.” A token is associated with the object that
generated the token and a list of parameters specified in the code.

Tokens are generated when methods execute “throw statements,” and the
generated tokens are automatically put into the global “token pool.”

An interaction (multiple object action) is described as a “join statement”
that defines a “join handler” (hereafter referred to as “handler”). A handler
specifies the set of tokens that participate in the interaction, the optional
conditions, and the body statements that are executed when the interaction
occurs.

Interactions are started when the special “ignition” statement is executed
in the program; this statement corresponds to the “handle event” phase of
a game program, and is expected to be used in the main loop of the game
program. When the ignition statement is executed, the token pool scans the
list of defined handlers one by one, and tries to select the tokens that match
with a handler.

4 Authors Suppressed Due to Excessive Length

— When all the handler’s token specifications are matched with the existing
tokens and the handler’s associated condition is true, if specified, the han-
dler “fires,” and the body of the handler is executed. Within the body, each
token’s associated objects and parameters are available. The tokens that
participated in a fire are removed from the token pool unless otherwise spec-
ified.

The major benefit of the above design is that handlers are neutral to all
objects and are associated with the global token pool. The separation of ob-
ject interactions (handlers) and each object’s behavior (methods) simplifies the
structure of game scripts, as shown in later sections.

Our target is not a parallel programming language, but rather a game script-
ing language, in which event ordering should by strictly defined and controllable.
Therefore, a list of handlers is scanned in the order of their definition (source
program), and each handler consumes as many tokens as possible when it is
considered, with matching being performed in the order described in the corre-
sponding join statement. Token matching is also performed strictly as per the
orderings; an older token in the pool is considered earlier. Note that a handler
can fire multiple times when there are sufficient tokens and when conditions per-
mit. The tokens generated within the method bodies invoked from the handler
bodies can participate in subsequent matching. Therefore, one can consume a
token by a handler and immediately regenerate the same token in its body if
necessary.

Tokens are identified with their names and the originating object. Therefore,
when an object throws tokens with the same name twice and the first token is
not consumed, the second token replaces the first one; the number of arguments
may vary among these tokens. Such operations are useful when one would like
to overwrite the arguments of some tokens. Alternatively, one can withdraw a
token with the “dispose” statement.

3 THE MOGEMOGE LANGUAGE

Mogemoge is an experimental game scripting language equipped with a join
token mechanism. The purpose of developing this language is to evaluate the
usefulness and descriptive potential of join token. Therefore, Mogemoge was
designed to be a minimal, compact and simple programming language, except
for the part executing the join token mechanism.

3.1 BASIC FEATURES

We have used prototype-based object orientation similar to that used in JavaScript
and Self[16], because it can lead to a compact language definition. Therefore, Mo-
gemoge provides the syntax to create concrete objects, and those objects can be
used as the prototypes from which subordinate objects (logical copies) can be
created.

Title Suppressed Due to Excessive Length 5

In the same manner, we have designed the functionalities of Mogemoge to be
minimal, namely, (1) object definition/creation, (2) method definition/invocation
and (3) action descriptions through executable statements. Below, we show these
functionalities with the use of small code examples.

The following Mogemoge code creates a game character object:

Char = object {
x=0; y=0;
init_char = method(_x, _y) { x= _x; y = _y; }

}s

The above code creates an ordinary object and assigns it to the global variable
named “Char.” Within the object definition, variable assignments define and
initialize the object’s instance variables. Note that the methods are also ordinary
objects and are stored in instance variables.

A “new” operator creates an object through copying:

c = new Char;

In the above code, the “new” operator creates a fresh object and then copies
all of the properties including the variables and their values from the Character
object. The resulting object is assigned to the variable “c.” To invoke methods
on an object, the dot notation is used, similar to that used in Java or C++.

An assignment stores a value to the specified variable. When the variable
does not exist, a new one is created. A “my” modifier forces the creation of local
variables for the surrounding scope. Although the syntax was borrowed from
Perl, its intention is more close to that of the local “var” in JavaScript.

foo = method() {

my x = 1;

result method(d) { result x; x =x + d; }
};

The “result” statement specifies the return value of the method. Therefore,
the foo method returns an anonymous method object, which increments the
value stored in x by d and returns the old value of x.

Mogemoge also has the following features, which we will not describe in here.

— C# like delegation

— Composition (compose objects and create a new object)
— Injection (modify an object by adding variables)

— Extraction (modify an object by deleting variables)

3.2 JOIN TOKEN FEATURE
A “throw” statement adds a token to the global token pool:

throw tokl1(1l, 2);

6 Authors Suppressed Due to Excessive Length

Conversely, a dispose statement removes a token from the token pool. The
following statement removes tokl that is thrown by the object executing the
method code:

dispose tokl;

A join statement defines a handler. The following is an example of a handler
definition:

join ri.toki(a, b) r2.tok2(c, d) {
print "a + ¢ =" + (a + c);
print "o +d ="+ (b + d);
};

In the above example, the handler fires when both tokens tok1 and tok2 are
in the token pool. The term r1.tokl(a, b) means that the handler matches
the tok1 token and two arguments can be extracted; when the number of actual
arguments is not 2, the extra values are discarded and nil values are used for
the missing values.

When the handler is invoked, a and b represent the corresponding argument
values for the matched token, and ri1 represents the object that has thrown the
matched token. The term r2.tok2(c, d) can be read likewise. When the body
of the handler is being executed, the matched values can be used.

The tokens matched against a handler are removed from the pool by default,
but when a token specifier is prefixed with the symbol “*,” the token is retained
in the pool. Following is an example:

join ril.toki(a) *r2.tok2(d) { ... }

Note that the tokens left in the pool can be consumed by a sussessive handler
defined in the code, or can remain in the pool until the next ignition.

Join handlers may optionally be guarded by Boolean expressions introduced
by a where clause. In the following example, the handler is invoked only when
the arguments of the two tokens are identical:

join ri.toki(a) r2.tok2(b) where a ==b { ... };

Aside from join statements, the existence of a token can be examined by an
exist operator, as follows:

if (exist tok) { ... 1}

3.3 IMPLEMENTATION

We have implemented Mogemoge using Java and the SableCC[6] compiler com-
piler framework. The lexical and syntax definition (about 160 lines of code) is
translated by SableCC to Java code, which implements the lexical analyzer and
the parser. The parser generates an abstract syntax tree (AST) from the source
program. Our interpreter inherits from the tree walking code (also generated by
SableCC) and executes the program actions while traversing the tree. The total

Title Suppressed Due to Excessive Length 7

size of the Mogemoge interpreter is about 2400 lines of code, including the Java
and the SableCC definitions.

Since Mogemoge runs on the Java Virtual Machine(JVM), it is easy to in-
terface Mogemoge code with Java code. Actually, in our implementation, game
graphics routines are written in Java and called from Mogemoge code. A special
syntax is provided to declare Mogemoge-callable Java method signatures. Con-
versely, Java code can call Mogemoge routines and can access Mogemoge data
structures (tokens and the token pool). However it is a bit difficult, because
calling conventions have to be maintained.

The token pool, tokens, and join handlers are represented using Java data
structures and the associated lookup code. When an ignition statement is exe-
cuted, the list of defined join handlers is examined one by one, while searching
for matched tokens in the pool. When a sufficient token for the handler is found,
the where clause (if any) is executed, and then, if the condition is satisfied, the
handler body is executed. Note that the where clauses and handler bodies are
represented as AST data structures and are stored within the handler object.

The current algorithm for a token-handler match uses a simple linear search,
and so far, this algorithm has not caused any performance problems with ap-
proximately 100 handlers and 1000 tokens. If necessary, we could implement
additional index data structures to speed up the search.

4 EVALUATION OF THE JOIN TOKEN
FRAMEWORK

We have implemented several example games using the Mogemoge language and
the join token framework. In the following sections, we describe two such games
and discuss our model. In addition, we have implemented one of the games
using an existing programming language (namely, Ruby with Tk graphics) and
compared the resulting code with the Mogemoge version.

4.1 “BALOON” GAME

“Balloon” is a simple shooting game written in Mogemoge; the number of lines
of code is 357. Its screenshots are shown in Fig.2. In this game, balloons with
hanging bombs come down from the sky. The player controls a battery (at the
left-bottom corner of the game screen), and shoots/explodes missiles to destroy
the bombs, so that bombs do not hit buildings at the bottom of the screen.

One missile can destroy only one balloon or bomb when the missile hits them
directly. Alternatively, explosion of the missile can destroy multiple balloons and
bombs that fall within the explosion area.

Rules of this game are summarized as follows:

R1. A battery’s direction is controlled by the player.

R2. The player can shoot/explode a missile by pressing/releasing a key.

R3. A balloon falls slowly from the top of screen. A bomb is bound to the tip of
a string hang from the balloon.

8 Authors Suppressed Due to Excessive Length

Fig. 2. Screenshot of “Balloon” Game

R4. A missile can destroy a balloon or bomb without an explosion.

R5. If either a balloon or a bomb is destroyed while connected, the remaining
one continues to fall. A bomb falls faster than a balloon.

R6. An explosion of a missile/bomb can destroy balloons.

R7. An explosion of a missile/bomb can explode bombs.

R8. A bomb and an explosion can destroy a building at the bottom of the game
screen.

R9. An explosion is not destroyed by any objects except for a building. An ex-
plosion cannot destroy two or more buildings.

These rules are classified into two categories: rules that specify relationships
(or interactions) between game characters and other rules. Relationship rules
are R3, R4, R5, R6, R7, R8, and R9. Non-relationship rules are R1, R2.
Non-relationship rules can be implemented as ordinary methods associated with
corresponding objects in a straightforward manner. However, when ordinary
method are used, some elaborated coding will be required to implement rela-
tionship rules, because two or more objects are involved with these rules.

With our join token framework, these relationship rules can be represented
as one or more join handlers in a clear and straightforward manner.

The following code initializes a balloon and a bomb:

Balloon = object {
init = method(x) { # a method which initializes a balloon
bomb = new Bomb; bomb.init(x, O); # create a bomb
throw balloon(bomb); # throws a token with a bomb
}
};
Bomb = object {
init = method(x, y) { # a method which initializes a bomb
throw bomb; # throws a bomb token
}
};

When a balloon is created, it also creates a bomb and a balloon token asso-
ciated with itself (as a throwing object) and the bomb (as an argument).

Title Suppressed Due to Excessive Length 9

Similarly, other objects such as a missile or an explosion throws a token
named missile or explosion (this time with no arguments) correspondingly,
at the time of creation.

The rules related to collisions/explosions (R4, R5, R6, R7, R8, R9) can
be implemented with the following handler code:

rule R4+R5: A missile destroys a balloon.

join m.missile() bln.balloon(bomb) where m.is_collided(bln) {
m.destroy(); bln.destroy(); # destroys the missile and the balloon
bomb.set_vel(0, 2); # add falling velocity to the bomb

}

rule R4(+R5): A missile destroys a bomb.

join m.missile() b.bomb() where m.is_collided(b) {
m.destroy(); b.destroy(); # destroy the missile and the bomb

}

rule R6(+R5): An explosion destroys a balloon.

join *e.explosion() bln.balloon(bomb) where e.is_collided(bln) {
bln.destroy(); # destroys a balloon
bomb.set_vel(0, 2); # add falling velocity to the bomb

}

rule R7(+R5): An explosion explodes a bomb.

join *e.explosion() b.bomb() where e.is_collided(b) {
b.destroy();
e = new Explosion; # an explosion takes place
e.init(b.x, b.y, 1.2); # initialize position and size

}

rule R8: A bomb destroys a building.

join b.bomb() bld.building() where b.is_collided(bld) {
bld.destroy(); b.destroy(); # destroys the building and the bomb

}

rule R8+R9: An explosion destroys a building.

join e.explosion() bld.building() where e.is_collided(bld) {
bld.destroy () ; # destroys the building

}

The handlers corresponding to rules R6 and R7 use the * symbol to re-
tain explosion tokens in the pool for some duration, so that they can destroy
multiple balloons and bombs. The handler corresponding to the rule R9 (the
last handler) is an exception; an explosion token is deleted when an explosion
collides with a building.

The binding rule, R3, is implemented by the following handler code:

rule R3: a bomb is bound to a balloon.

join *bln.balloon(child) #*b.bomb() where child == b {
b.set_pos(bln.tipx, bln.tipy);

};

If there is a pair of balloon token and bomb token such that an argument
of the balloon is the object associated with the bomb token, this means that

10 Authors Suppressed Due to Excessive Length

Fig. 3. Screenshot of “Descender” Game

the corresponding bomb is bound to the corresponding balloon. Therefore, the
position of a bomb is set to the tip of the string of a balloon (variables tipx and
tipy of a balloon means the position of the tip of the string). This handler is
intended to fire many times to continually adjust the positions of bombs. So, *
symbols are used to retain the corresponding tokens in the pool

The rule R5 is implemented as a supplementary code in the handler for rules
R4, R6, and R7. When a balloon is hit by a missile, the falling velocity of the
remaining bomb is increased. However, when a bomb is hit by a missile, the
speed of the corresponding balloon does not change, so no action is required.

As shown in the above listings, our handlers correspond to game rules in a
fairly straightforward manner, and the code described in the handler bodies are
simple and readable, suggesting the usefulness of our join token framework.

4.2 “DESCENDER” GAME

“Descender” (Fig.3) is an action game that is more complicated than the one
described in the previous section; the number of lines of code is 847. The aim of
the player in this game is to descend infinitely along the wall of two buildings
using horizontal and vertical ropes. The player controls where to stretch ropes
and his movement along them. Birds drops bombs, and building inhabitants
occasionally cut vertical ropes. If a bomb hits the player or an inhabitant cuts
the rope that the player is currently hanging on, the game is over.
Rules of this game are summarized as follows:

R1. The player can move along a horizontal or vertical rope from his current
position.

R2. When the player is holding the bottom of a vertical rope, or there is no
vertical rope under the player, he can extend a vertical rope to the bottom
of the screen.

R3. All objects are scrolled upward when the player descends (the vertical coor-
dinate of the player is fixed).

RA4. Clouds are scrolled up more slowly than other scrolling characters; they are
for visual decoration and have no effect on other objects.

Title Suppressed Due to Excessive Length 11

R5. When the player is holding a vertical rope and there is no horizontal rope
around him, he can stretch a horizontal rope.

R6. Birds flying in the air occasionally drop bombs.

R7. Inhabitants in some of the windows occasionally cut the vertical rope in front
of them.

RS8. If a bomb hits the player, the player falls and the game is over.

R9. If an inhabitant cuts the rope that the player is currently holding, the player
falls and the game is over.

R10. A vertical rope extends to the bottom infinitely until an inhabitant cuts it.

All of the above rules except R6 are implemented with join handlers.

In this game, a player is in one of three modes: descending mode (holding a
vertical rope), horizontal moving mode (holding a horizontal rope), and falling
mode (the game is over). A player’s action in each mode is implemented as a cor-
responding method, and a variable named update stores the currently effective
mode, as follows:

Player = object {

update_descending = method() { ... }
update_moving_horizontally = method() { ... }
update_falling_horizontally = method() { ... }

update = update_descending; # the initial mode is descending.

}

The following is the descending mode method:

update_descending = method() {
if (guiKeyPressed(KEY_DOWN)) {
throw cmd_descend;
}
if (guiKeyOn(KEY_LEFT)) {
throw cmd_shoot_hrope;
} elif (guiKeyOn(KEY_RIGHT)) {
throw cmd_shoot_hrope;
}
is_left_side = (x == LEFT_PLAYER X);
if (guiKeyPressed(KEY_RIGHT) and is_left_side) {
throw cmd_go_side;
} elif (guiKeyPressed(KEY_LEFT) and not is_left_side) {
throw cmd_go_side;
}
I

The actions the player can perform in a descending mode are to descend,
to stretch a horizontal rope, and to switch to horizontal moving mode. These
actions are expressed by throwing either a cmd_descend, cmd_shoot_hrope, or
cmd_go_side token. For example, a cmd_descend token (thrown when the down
arrow key is pressed) is handled by the following two handlers:

12 Authors Suppressed Due to Excessive Length

join p.cmd_descend *r.v_rope where r.is_on(p.x, p.y) {
d = min(r.by - p.y, 2);
if (d>0) {
throw scroll(d);
p.anim_descend();
} else {
r.extend_to_bottom();
}
};
join p.cmd_descend { };

A v_rope token is thrown by a vertical rope at its creation time and remains
in the pool as long as the rope is available (designated by a * symbol).

A body of the first handler is executed when there is a cmd_descend token
and a player is on a vertical rope. This handler implements the rules R1 and
R2. When the vertical rope has some margin below the player to descend (R1),
all objects are scrolled up (as the player descends) Otherwise, the vertical rope
is extended to the bottom of the screen(R2). Note that the scroll token is
thrown when the player is descending, as explained shortly.

The second handler has an empty body; it simply consumes a cmd_descend
token when it is not processed by the first handler, e.g., either the player is not
descending or the player is not on a vertical rope.

Other command tokens thrown in a descending mode are implemented sim-
ilarly. All command tokens thrown at a certain animation frame are handled
within the frame, and are consumed by an empty handler when they are not
effective in that frame.

The game screen scrolls up according to the player’s descending action (R3).
Therefore, all game characters except for the player update their vertical coor-
dinate. As shown above, the handler of rule R1 throws scroll token when the
player is descending, and this token is handled by the following handlers (the
argument of a scroll token represents the number of pixels to scroll):

join *any.scroll(d) *o.bg_object {
0.y = 0.y - d;
if (o.y < SCROLL_OUT_LIMIT.Y) { o.destroy(); }
I
join *any.scroll(d) *r.v_rope {
if (r.y>0ord>0){#
r.y =r.y - d;
if (r.y<0) {r.y=0;1%
}
if (r.by < HEIGHT) {
r.by = r.by - d;
if (r.by < 0) { r.destroy(); }
}
I
join *any.scroll(d) *c.cloud {
c.y=c.y-4d/ 2.0;

Title Suppressed Due to Excessive Length 13

};

join any.scroll { };

Note that the scroll token is thrown by the handler that consumes the
token cmd_descend and is processed by another handlers in the same ignition.
Therefore, handlers that processes scroll should be placed below the handler
that throws scroll.

All objects that scroll but have no specific action while scrolling throw a
bg_object token at initialization; they simply move upward and destroy them-
selves when they go out of the screen. This is implemented by the first handler.

The second handler is for a vertical rope. A vertical rope, whose top and
bottom vertical coordinates are held by y and by correspondingly, behaves a
little differently. As the rule R10 states, the bottom of a vertical rope does not
move upward if its bottom is at the bottom of the game screen.

The third handler implements a cloud that goes slowly (at half the speed of
other scrolling objects) up the screen (R4). When a cloud goes out of the screen,
it resets its position to the bottom to “reuse” itself (this behavior is described
in the cloud object and is not shown here).

The fourth handler is defined at the end of handlers processing the scroll
token to consume a scroll token when its job is done, as in the other command
tokens.

The rule R5 is implemented by the following handlers:

join p.cmd_shoot_hrope *r.h_rope_flying
where abs(p.y - r.y) < BREADTH_TO_CHANGE_ROPE {
};
join p.cmd_shoot_hrope *r.h_rope
where abs(p.y - r.y) < BREADTH_TO_CHANGE_ROPE {
};
join p.cmd_shoot_hrope {
hr = new HorizontalRope;
if (p.x == LEFT_PLAYER X) {
hr.init(p.y, false);
p.anim_shoot_hrope(false);
} else {
hr.init(p.y, true);
p.anim_shoot_hrope(true);
}
};
join p.cmd_shoot_hrope { };

Note that a horizontal rope throws either a h_rope token (on which a player
can hang) or a h_rope_flying token (on which player cannot hang on because
it is not completely stretched between buildings).

A horizontal rope can be stretched only when there is no other horizontal
rope nearby (R5). This behavior is expressed by the first 2 handlers. If there is

14 Authors Suppressed Due to Excessive Length

any horizontal rope within BREADTH_TO_CHANGE_ROPE pixels, a cmd_shoot_hrope
token is simply deleted so that no further action occurs.

The third handler stretches a horizontal rope leftwards or rightwards accord-
ing to the current position of the player. Note that this hander specifies only
one token. Its role is to execute the stretching action when the cmd_shoot_hrope
token was not removed by the previous handlers.

The fourth handler removes the token when its task is done as in the other
handlers that process command tokens.

An inhabitant tries to cut a vertical rope (the rule R7). An inhabitant con-
sists of two objects: the inhabitant itself and his arm. An arm object throws a
cmd_cut_rope token if it has fully extended from its body, and this token is pro-
cessed by the following handlers (method can_cut checks if the arm can actually
cut the rope):

join a.cmd_cut_rope *r.v_rope where a.can_cut(r) {
r.cut(a.y);
};

join a.cmd_cut_rope { };

Method cut actually cuts the rope and throws a cut_vrope token with two
arguments, which are the top and bottom y coordinate of the cut part. This
token is processed by the handlers corresponding to R9, which simply checks if
the player should fall and changes its state accordingly:

join *p.player rope.cut_vrope(by, cut_y)
where p.x == rope.x
and rope.y <= p.y and p.y <= by
and cut_y < p.y {
p.update = p.update_falling;
};

join any.cut_vrope { };

The rule R8 is implemented similarly:

join *p.player o.bitch where p.is_collided(o) {
p.update = p.update_falling; # create an effect object....
};

Although the “Descender” game has some complexity, the methods of the
game objects are simple and the join handlers concisely express the correspond-
ing rules in a straightforward manner.

4.3 COMPARISON WITH RUBY

As an evaluation, we have implemented our “Balloon” game also in Ruby (pre-
cisely Ruby/Tk; Tk library is used for graphics and input handling). In this
section, we present the comparison between a join token-based code in Moge-
moge and an ordinary O-O code in Ruby.

Title Suppressed Due to Excessive Length 15

The resulting game was mostly identical except for the speed and/or look and
feel owing to differences in graphics library. The numbers of lines of code is 357
for the Mogemoge version and 436 for the Ruby version. The object definitions
are mostly similar for both the versions, but there are large differences in the
event handling part.

In this game, most of the interactions among characters are collisions, e.g.,
an interaction occurs when two characters collide with each other. Therefore,
we can factor out collision detection onto a single iteration method (a kind of
coroutine in Ruby) as follows:

def check_collision(c1, c2)
ols $obj_list.find_all { |ol| o.kind_of? ci1 }
02s = $obj_list.find_all { |ol o.kind_of? c2 }
ols.each do |ol]
02s.each do |o02]
yield ol, 02 if ol != 02 && ol.is_collided(02)

end
end
end

With the help of a check_collision method, an interaction handling code
can be written as follows:

def check_collision_all

check_collision(Explosion, Bomb) do |e,bl
b.destroy()
Explosion.new(b.x, b.y, 1.2)

end

check_collision(Explosion, Balloon) do |e,bln|
bln.bomb.set_vel(0, 2) if !'bln.bomb.nil?
bln.destroy

end

check_collision(Missile, Balloon) do |m,bln]|
m.destroy; bln.destroy
bln.bomb.set_vel(0, 2) if !'bln.bomb.nil?

end

check_collision(Missile, Bomb) do |m,b]
m.destroy; b.destroy

end

check_collision(Building, Bomb) do |bld,bl|
bld.destroy; b.destroy

end

check_collision(Explosion, Building) do |e,bld]|
if e.active then e.active = false; bld.destroy end

end

end

Each of the calls to check_collision corresponds to handlers in the Moge-
moge version, but there are the following differences:

16 Authors Suppressed Due to Excessive Length

— The kinds of characters participating in each interaction are explicitly de-
scribed as class names, but their roles in the interaction are not shown; they
are expressed as token names in Mogemoge.

— Additional objects participating in the interaction have to be stored in and
extracted from the participating object; they are expressed as token argu-
ments in Mogemoge.

— Checks for condition prior to actions are embedded in the code; they are
represented as “where” clauses in Mogemoge.

— Unavailability of an object for multiple interactions have to be managed
by the code through flags (active property in the above code); they are
automatically managed by token semantics and * symbols in Mogemoge.

— The above Ruby code does not address rule R3 because it is not a collision.
We had to make a balloon and a corresponding bomb to refer to each other
via their reference variables and had to maintain this relation manually, as
in the following code, in the destroy method:

def destroy # a balloon must not refer to a destroyed bomb
Oparent.bomb = nil if !@parent.nil?
end

Using a join token, such references were not necessary and R3 could be
described in a straightforward manner within the handler.

In more complex games with many interactions other than collisions (as in
the “Descender” game), the complexity of the Ruby code will increase to a great
extent.

In addition, the above code runs nested loops for every combinations of inter-
acting characters for clarity; if the performance becomes a problem, we will have
to merge some of the loops, further decreasing the readability of the code. In the
case of Mogemoge, we can implement various speedup techniques as necessary
without affecting the existing code.

5 RELATED WORKS

There are many aspects in our join token framework, so we shall examine the
related works with respect to each of them.

game scripting languages Since our goal is to ease game programming, we
first examine the related works that treat game scripting languages. As noted
previously, an action game programmer has to control multiple concurrent ac-
tivities of game characters, along with their interaction in a state-dependent
manner.

Micro-threads of Stackless Python [12], [15] allows assigning a dedicated
thread to each of the game character objects, so that those objects seemingly
act autonomously and concurrently; this view is very natural for game designers.
Several websites including [2] recommend this style of game scripting.

Title Suppressed Due to Excessive Length 17

Yet, another awkwardness of game programming is that each of the characters
may have their own state, and they interact with each other in a state-dependent
manner. Some of the game scripting languages, including UnrealScript[14] pro-
vides a notion of state; in such languages, game programmers can explicitly
describe states in their code. However, “interaction” poses another difficulty,
because two or more characters (with their own states) are involved in an inter-
action.

coordination models From the above discussion, it seems necessary to intro-
duce some coordination model to the game scripting language in order to ease
the description of interactions among concurrent activities (game characters).

Linda[7] is a coordination model that uses a “tuple space” as a communi-
cation media among concurrent activities. In Linda, both the sender and the
receiver of a message (a “tuple” in Linda terminology) are separated in time
(at which timing) and space (at which portion of the code). This relieves the
programmer from the awkward control of details. However, the demerit of Linda
is that the coordination is not symmetric and a bit too low-level; the sender
simply emits its tuple, and the receiver must actively select tuples matching its
needs.

Join-calculus[4] is yet another coordination model in which the atomic join
handler of two or more concurrent activities can be specified. The merit of join-
calculus is its high level description and symmetry. On the other hand, the target
of the coordination is the thread itself and the two activities are tightly coupled
at the join handler; loose coupling of Linda will be more desirable in this respect.

Therefore, we have combined the advantages of both the models and designed
a join token framework. Tokens and token pool corresponds to tuples and tuple
space in Linda, respectively. A join handler was derived from join-calculus, al-
though our handlers join tokens, not threads. Moreover, we have associated an
originating object to each of the tokens in order to ease the object-orientation
style of programming, which is common in game programming.

reactive/event programming Join token can be viewed a kind of reactive
and/or event-based programming, which has a long series of history.

First, rule engines, long used for expert systems, have the facility to gather
multiple facts (similar to tuples in Linda) and invoke rules when matches are
found. Moreover, recent rule engines such as Jess [5], [8] allows Java objects to
be used as facts: thus, it can be used as a coordination mechanism for game
program written in Java. However, such code will be awkward to write, because
every coordination activity must be converted to Jess API calls. Alternatively, it
is quite possible to use Jess or a similar rule engine as an implementation device
for token pool and take advantage of the efficient Rete[3] algorithm built into it.
We will revisit this topic later.

Second, Dynamic aspect-oriented programming (AOP) as in [1], [10] makes it
possible to insert join points to existing class code at runtime. It could be used to
install callbacks (join points) when an object becomes ready for interaction and

18 Authors Suppressed Due to Excessive Length

would like to wait for one of the other objects to express willingness to participate
in an interaction. However, this approach is similar to a thread-based join such
as in join-calculus, with its drawbacks, as noted previously. It might also be too
general and powerful; a more domain-specific solution would be desirable.

Third, data binding as seen in JavaFX[11] and reactive programming[13] can
trigger events when the values of some variables have changed, and appropri-
ate action can be specified. Their major usage for now is to reflect values of
some portions to other parts of the system (e.g., user interface components or
accompanying objects or so on), but a more flexible setting (for game logic pro-
gramming) is also possible. However, such customizations might be awkward.
Therefore, they might be used as back-end mechanisms to implement join to-
kens, as in the rule engine case.

6 DISCUSSION

In this section, we discuss the various aspects of join token frameworks and
discuss their related issues.

concurrency issue Asnoted in Section 2, the join token framework described in
this paper is targeted to game scripting, in which event ordering and processing
order should be strictly controlled by the programmer. Therefore, true concur-
rency and the resulting non-determinism are intentionally excluded. Perhaps,
thanks to this strict ordering property, we got little surprises when debugging
the join token-based code.

However, Linda and join-calculus, from which the join token was derived,
are actually concurrency coordination models. Therefore, the join token model
might also be useful for a true concurrent setup also. We might encounter more
“surprises” with such setup, and might require additional coordination (order
controlling) mechanisms. We would like to investigate this issue in the future.

restriction regarding token overwriting As explained in Section 2, each
object can throw multiple tokens with different names into the pool, but can
have only one token with a specific name, because the latter throw statement
with identical name replaces the previous one. Although this may pose some
restriction on the usage of tokens, we have chosen this condition for clarity and
simplicity; we have felt no inconvenience so far.

applicability to more complex games The games we have implemented
with Mogemoge and join token so far are fairly simple and small ones, so their
applicability to more complex (commercial-scale) games is not yet known.
However, we note that token names are hard-coded in the source code and
cannot be changed at runtime. Therefore, although the token pool looks like a
global chaos, it is not so in fact; logically, there are many small pools for each
distinct token names. When developing large scale games, a token naming con-
vention can be used to safeguard against interference among program modules.

Title Suppressed Due to Excessive Length 19

performance issue As noted above, we have only implemented small games
using the join token, and so have not encountered any performance problems so
far. We expect that this situation might change in the case of larger games.

However, we note that current video games use the majority of their CPU
cycles in 3D high resolution graphics, so we guess that CPU cycles used for game
logic computation will be negligible even on fairly complex games.

When dealing with the computational complexity of token matching, given
that tokens with different names are totally distinct, the number of tokens and
handlers with the same name matters. In a naive implementation (which we use
for current Mogemoge implementation), with M handlers and N tokens for a
specific token name, the computational complexity will be O(MN).

If this becomes a problem, we could incorporate a clever algorithm such as
Rete[3]. However, since the Rete algorithm caches the outcome of Boolean guard
expressions (“where” clauses in join tokens), we need a guarantee that the value
of guard expressions does not change without notice. One way to achieve this
might be to restrict the guard expressions to use only local values (handler
associated objects and their instance variables). We consider a detailed analysis
as our future work.

7 CONCLUSION

Game scripting languages are an effective approach to develop complex games.
In the case of action games, the difficulty in development mainly resides in
describing complicated interactions among the multiple concurrent behaviors of
objects in a state-dependent way.

The join token mechanism that was described in this paper addresses this
problem by means of the global token pool and join handlers. This mechanism
combines the advantages of the join-calculus and the Linda computational mod-
els.

To show the effectiveness of join token mechanism, we have designed and de-
veloped an experimental game scripting language called Mogemoge. Mogemoge
is an interpreted, prototype-based object language equipped with join token.
We have developed Mogemoge using Java and SableCC (a Java-based compiler-
compiler framework).

For the purpose of evaluation, we have implemented several demo action
games with Mogemoge, including the two described in this paper. We have also
compared Mogemoge against an ordinary scripting language through experi-
ments. As a result, the Mogemoge code could be easily derived from the game
rules and is comprehensive in general.

At present, we have developed only a few simple sample games with Moge-
moge. We would like to evaluate the effectiveness of join token in more complex,
realistic games in the future.

20

Authors Suppressed Due to Excessive Length

ACKNOWLEDGEMENT

The authors would like to thank the reviewers of Software Language Engineering
Conference 2011 for their helpful suggestions to improve this paper.

IMPLEMENTATION STATUS AND AVAILABILITY

The implementation of Mogemoge and its sample programs are available at the
web site at http://www.nisnis.jp/mogemoge/.

References

1.

10.

11.

12.

13.

14.

15.

16.

J. Bornér. What are the key issues for commercial aop use: how does aspectwerkz
address them? 3rd International Conference on Aspect-Oriented Software Devel-
opment, pages 5—6, 2004.

Michael Dorf. Need high levels of concurrency? Try stackless Python, July 2010.
http://www.learncomputer.com/stackless-python/.

C. L. Forgy. Rete: a fast algorithm for the many pattern/many object pattern
matching problem. Artifical Intelligence, 19(1):17-37, 1982.

Cedric Fournet and Georges Gonthier. A Calculus of Mobile Agents, volume 1119
of Lecture Notes in Computer Science, pages 406—421. Springer, 1996.

E. Friedman-Hill. Jess in Action: Rule-Based Systems in Java. Manning Publica-
tions Co., Greenwich, CT, 2003.

Etinne Gagnon. SableCC, an object-oriented comiler framework, 1998. Master’s
Thesis, McGill University.

David Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80-112, 1985.

Jess: the rule engine for the Java platform. http://www.jessrules.com/.

Taketoshi Nishimori and Yasushi Kuno. Join token: A language mechanism for
interactive game programming. under submission, 2011.

Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just-in-time aspects: Effi-
cient dynamic weaving for java. 2nd international conference on Aspect-Oriented
Software Development, pages 100-109, 2003.

Vacalv Slovacek, Mirosav Macik, and Martin Klima. Development framework for
pervasive computing applications. SIGACCESS NEWSLETTER, 95:17-29, 2009.
Stackless Python. http://www.stackless.com/.

Jean-Ferdy Susini. The reactive programming approach on top of Java/J2ME.
Proceedings of the 4th international workshop on Java technologies for real-time
and embedded systems, pages 227-236, 2006.

Tim Sweeney. UnrealScript language reference. http://udn.epicgames.com/Three/
UnrealScriptReference.html.

C. Tismer. Continuations and Stackless Python. Proceedings of the 8th Interna-
tional Python Conference, 2000.

David Ungar and Randall B. Smith. Self: the power of simplicity. OOPSLA’87,
pages 227-242, 1987.

